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I. INTRODUCTION 

The basic objective of radiation shielding is for adequate protection 

of personnel, equipment, and structures against the harmful effects of 

nuclear radiation. The shield moderates and absorbs neutrons and gamma 

rays, the two most important types of radiation from a shielding stand­

point. 

For shield calculations, there are two general classes of computa­

tional estimates: the rough and simple type computations and the 

elaborate calculations requiring high-speed digital computers. In 

order to minimize radiation effects, the fine detail of shield design 

based on the elaborate calculations using high-speed computers is 

necessary. 

One accurate computing technique is the transfer matrix method. 

The general idea of this method is that the transmission and reflection 

properties of a shield can be described by matrices which give the 

outgoing angular and energy distributions in terms of the incoming 

distributions. The major computational advantage is that various 

intermediate results are common to problems for different spatial 

configurations. This indicates that the method is best suited for 

extensive computational programs. 

Because of the importance of the neutron shield and the nature 

of neutron cross sections, neutron transport calculations were chosen 

for the present work. However, the same technique can be applied to 

ganma ray transport calculations. 
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The angle-energy correlation and the cross sections approximated 

by the ultra-fine group "point data" have been used for the transfer 

matrix calculations. Since most of cross section sets developed 

recently for transport codes are multigroups, the modification of the 

transfer matrix to accept these cross section sets is required. This 

problem is solved by using legendre polynomial expansions in dif­

ferential scattering cross sections. 

By means of the point matrix kernel concept, the modified transfer 

matrix can be applied to perform point isotropic source analysis with­

out losing its computational advantage. The higher order Legendre 

moments of the point matrix kernel are also determined such that the 

outgoing angular and energy distributions can be obtained. 

Thus, the purposes of this investigation are 

(1) to investigate the applicability of the modified transfer 

matrix to neutron transport, 

(2) to varify the accuracy of the available neutron cross 

section sets, DLC-2/100G, for use in transport calculations 

of deep penetration, and 

(3) to calculate the angular distributions through the shield 

materials due to a point isotropic source. 
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II. LITERATURE REVIEW 

There are several numerical methods dealing with the solution of 

the Boltzmann transport equation. This is necessary for the solution 

of the neutron and gamma-ray transport problems. Because of its dif­

ficult nature the transport equation is often solved by postulating 

an approximate form for the solution itself. 

A standard one-group time- and azimuthal-independent transport 

equation with isotropic scattering was solved analytically by Case and 

Zweifel [7]. They found that there are at most two eigenvalues out­

side the interval [-1, 1] which correspond to two regular eigenfunctions. 

The interval [-1, 1] forms the continuous part of the eigenvalue 

2 
spectrum, for which no exact solutions within Hilbert space L (-1, 1) 

exists. Two kinds of eigenmode expansions are employed such that the 

eigenvalue spectrum becomes purely discrete; the former continuous 

part is replaced by a finite set of eigenvalues. 

The first approximation is based on the spherical harmonics ex­

pansion. The basis of the method is the expansion of all functions of 

the angular variable in terms of the spherical harmonics [8, 25, 28]. 

For azimuthal-independent problems, a subset of the spherical harmonics, 

the Legendre polynomials, suffices. The flux in the Boltzmann equation 

is expanded in terms of these polynomials. The angular variable from 

the resulting set of equations is eliminated which leads to a set of 

coupled differential equations. The fundamental weakness of the spherical 

harmonics method is that near strong discontinuities in material 

properties it requires many harmonics to represent the angular 
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distribution. This deficiency has been improved by using two series 

of Legendre polynomials to approximate the angular distributions at 

an interface between two media [8, 25, 28]. Thi^ is the so-called 

double-P^ approximation. In the consistent approximation (PNMG), 

the energy variable is treated to the same degree of approximation for 

higher orders of N. Each order of the Legendre expansion retained 

requires an analogous treatment of its scattering integral. This method 

has been used extensively in shielding calculation using the ex­

pansion [26]. 

A second approximation is called the discrete ordinate method 

[8, 25, 28]. The basic idea in this method is to approximate the 

integral in the Boltzmann equation by a Gauss quadrature formula. It 

turns out that the resulting numerical accuracy is almost identical 

to that of the spherical harmonics solution for equivalent computation 

work. In Carlson's method [5, 25], the integral in the transport 

equation is approximated by a much simpler device of dividing the 

angular interval [-1, 1] into finite subintervals and by assuming that the 

angular distribution varies linearly in each subinterval. This method, 

in particular the discrete approximation is suitable for high-speed 

cranputer calculations. 

The invariant imbedding method has been applied to neutron shielding 

problems [4, 19]. The method depends upon the radiation flux crossing 

the boundaries of a region and how this radiation flux varies as the 

thickness of the region changes. The computational advantages of this 

method are a direct consequence of the fact that the method leads to 
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an initial value problem rather than the linear boundary value problem 

obtained by the Boltzmann equation approach. 

The Monte Carlo method [25] is based upon statistical analysis 

and the life histories of a large number of particles released from a 

source. At each step, collision, absorption, etc., is chosen using a 

random variable from a known probability distribution for that event. 

Direct numerical integration of the Boltzmann equation has been 

considered [23]. The main difficulty with this method is that it re­

quires a large number of spatial points and angular terms for deep 

penetration calculations. 

The moments method is an expansion technique for solving the 

transport equation in infinite homogeneous media. The angle, space, 

and energy variations are treated by polynomial expansion [8, 25]. 

The method has been applied successfully in the development of buildup 

factors for gamma-ray shielding calculation [12]. 

A neatly condensed presentation incorporating a wide range of 

generalizations of the discrete-angle procedure can be recognized in 

the transfer matrix formulation. Peebles and Plesset [22] computed 

the transmission matrix for thin slabs by orders of scattering. They 

did the spatial integrations analytically and the angle-energy integra-

txcti nuiûerxcally. ^ataolca [14] developed another approach by ixsxng 

Monte Carlo methods to compute the transmission and reflection matrices 

for thin slabs. Aronson et al. [1, 2, 3, 6, 29] have developed a 

formal solution of the differential equation for the transfer matrix 

as a function of thickness. A polynomial expansion method for the 

transfer matrix starting from the transport equation was used to 



www.manaraa.com

6 

calculate gamma-ray transport [20]. Two dimensional neutron transport 

based on the transfer matrix method has also been developed [10]. 

Because of the restriction on a plane source for the transfer matrix 

method, Rohach [24] developed the point matrix kernel and applied it to 

the point source analysis. 

In the formulation of a and p operator matrices in the transfer 

matrix method, the angle-energy correlation was used in the neutron 

calculation [3, 29]. Both a and p matrices obtained by this technique 

are not suitable for using recently developed neutron cross section 

data such as DLC-2/100G. In order to use this data set a reformulation 

of a and p was necessary. 

In addition, no work has been done to obtain the angular flux for 

a point source based on the point matrix kernel. This problem can be 

solved if the higher order Legendre moments can be determined for the 

point source geometry. 
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III. GENERAL THEORY 

A. Transfer Matrix H Formulation 

Consider a sourceless homogeneous slab as shown in Fig. 1. Let 

the distribution of radiation incident from the left be denoted by X^, 

and that from the right by X^. These distributions are in general 

functions of direction and energy. Let the distribution emerging to 

the right be designated by and that to the left by Xg. 

%1 

%2 

Fig. 1. Slab geometry 

The flux vectors obey the matrix equation 

-%1-
= H(x) 

1 Y ' V 1 

where H(x) is a 2 X 2 matrix of operators. 

H(x) = 

T(x) - R(x)T ^(x)R(x) R(x)T ^(x) 

T-l(x) 

(1) 

(2) 

L- T (x)R(x) 

Here T(x) and R(x) are the transmission matrix operator and the reflection 

matrix operator, respectively. 

Equation (1) leads immediately to a composition law for H-matrices. 

Consider a two-layer configuration, one has 



www.manaraa.com

-X-

= «2 = Vi 

1
—
 

.x^. -^2-

where and are respectively the H-matrices for slabs 1 and 2. If 

the H-matrix for the entire configuration is denoted by H, then H = 

The composition of n layers evidently gives 

H = H ... H.H. . (3) 
n z i 

From Eq. (3) and the explicit form, Eq. (2), for H, one derives 

for two layers 

CD 

T = TgCl - R^Rg)"^ = ̂ 2 s 
n=0 

-L 
R = + T^(I - RgR^) R2T^ 

= + T^RgCl -

CO 

= Rl + T^R^ (R^Rg)""!^ . 
n=l 

where I is the unit operator. 

As shown in Ref. [3, 29], the transfer matrix H has the form 

H(x) = e 
-Wx 

(4) 

Here W is a 2 X 2 matrix of operators independent of x. 

Assume that the transmission operator T(x) and the Reflection 

operator E(x) can be expanded as follows : 

T(x) = e'^ = I- ax+-|y (ox)^ - ... 

R(x) = I - e = Px - (Px)^ + ... 

(5) 

(6) 
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Substituting Eqs. (5) and (6) into Eq. (2), to first order in the 

thickness x, one finds that 

" • r  ' 1  LB - Of J 
(7) 

It turns out best for purposes of computation to diagonalize W 

— -1 
and simultaneously, H. If W = SWS is diagonal, then 

H(x) = s"^(e"^^)s = s"l(e"SWS X)g 

The technique to diagonalize the transfer matrix H(x) is given 

in Ref. [3, 29]. The results are 

H(x) = ̂  

1 
4 

B B, 

r -Ax 
e 

Ax 

fc. c 1 + 

B e"^C + B e^C 
"T + - " 

B + eJ^C 
. — -r "T 

+ B eA%c-
-r - • + 

Be-'^C + By 
- + +-

. (8) 

Due to downscattering only the matrices B^, B , C^, and C are 

block lower triangular matrices and A is a diagonal matrix. 

B. Matrix Representation of a and p 

The one dimensional time-independent Boltzmann transport equation 

can be written 

»2tt 

œ 0(x, (u, V) +a ̂(V)0(x, (D, V) = I dcu' I dv' I 
1 «^0 «^0 

dC'cTgCn', V';n, V)0(x,tB, V). 
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Based on this equation, a and p are determined as the integral operators 

[3, 29], 

a = — I dcu'|a (V )6 ((u - cu')6 (V - V* ) - I dV' | dÇ'a (|i , V' ; 

•'o  ̂ •'0 0̂ 

1 -V -2TT 

f f av f 
#0 

(9) 

I dw' I dV I dCa^Cp.;, V; V), (10) 

where 

= uxu' + (1 - - w'2)l/2 cos C' 

u,̂  = - axu' + (1 - gQg 

The differential scattering cross section in Eqs. (9) and (10) can be 

expanded in Legendre polynomials [16], 

00 

(11) 
J6=0 

Substitution of Eq. (11) into Eqs. (9) and (10) will result in 

a = dcu'|a-^(V')6 (uu - cu')6 (V - V') 

I 
•V -2Tr 

f P2 + 1 I 
< i v ' j  d c  v ) w |  ( 1 2 )  

f 2^ 00 

if dm' I dV I dC y, a.,CV'! V)P,(|il). 

Jo Jo Jo  ̂

'0 •'0 

(13) 

Using the equations 

.2TT 

I 
dC'P^(^o) = 2nP^(m)P^(m') 

and 
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I dC'P^Cn;) = 2nPj,(aj)P^(- «,•), 

*0 

Equations (12) and (13) become 

1 

i a=~ I d(u* (V')6(lu - tD*)6(V - V) 

•V 

and 

- j  dV ̂  V)P^((c)P^(m')| (14) 

do)' /" dV £ CT ,(V'; V)P.(cu)P,(- (ti'). 

Jo Jo ^=0 
(15) 

In order to deal with matrices rather than integral operators, a 

group representation in energy and an angular expansion in half-range 

Legendre polynomials have been chosen. Expand the flux as 

CO 

0(x, U), V) = XI (16) 
n=0 

Substituting Eq. (16) into Eq. (14) and multiplying both sides by m, 

results in 

GO 

CKU0^(x, V)P^(u)) 
n=0 

^ ( 
= 2Lj j dtu'jCT^(V')6(tB-a)')6(V-V*) 

n=0 Jo I 

oo I 

-J dV V)P^(u))P^(co')|0^(x, V')P+(w'). 

Because of the orthogonality of the half-range Legendre polynomials, the above 

equation can be multiplied by P^(uj) and integrated over tu. Therefore one has 
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Define 

CO ^1 

Q;0^(X, V) I {uP^(cu)P^(tu)du) 

V t ~ 2-( I I dcu'cĵ  
Jo Jo 

-  è  ̂  dm' J" dV J  Gg^(V'; V)P^(u,)P^(m') 

(V )6 (u) -  tu')ô (V -  V )0^(x, V )P^(u) ')P^(cu) 

0̂ (X, V')P^(CU')P'^(CB). 
n n m 

e =1 a)P^(co)P^(iu)dtu, (17) 
liA&t • XI m 

Jo 

d̂ (lJ'o) = I dou f du)'Pjj(cu)P̂ ((D')P̂ (ti)')P̂ (co), (18) 

Jn Jn 

I - j f  
mn I I d("'5(("-m')P^((D')P+((«)=^-^ , (19) 

FO ^0 

CO CO 

then g  V)=^ 2^a^(V')6 (V -  V )0^(x, V) 

n=u n=v 

.V 

-  Ë  È  ̂  f  V ) d V .  
n=0 X=0 

To put the equations into matrix form, the angular expansion is truncated 

after 4 = L, and hence n = L, resulting in 

Ea^(x, V) =Za^CV')6(V-V')^(x, V) 

L 

- 22 I V)D^(n^)0(x, V')dV'. (20) 
^=0 ^0 

The p operator is also readily identified in matrix form as 
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-V 

Ep^(x, V) = ̂  I cr^jj(V' ; V)D^(|a.;)^(x, V')dV' , (21) 

Jo =0 

where 

D^cn;) = (- ly'Dg(p^) 

The computations of E, and are given in Appendix. 

The energy variable is approximated by the multigroup formulation. 

Define the gth group as AV = V - V . In the neutron calculation 
g g+1 g 

V stands for lethargy and the first group is the lowest lethargy 

group. The neutron flux and cross sections are assumed constant within 

each group. Equations (20) and (21) are then integrated over the gth 

group using the lethargy variable as the integration parameter. 

rVi rVi 
E I  a ,^(x, V)dV = z l  cTJ.(V*)6(V - V')^(x, V)dV 
Jv •'v 

^ V 2£ + l f^S+1 Vg'+l 
- 2^ I dV I a ;(V' ; V)D-(u )^(x, V)dV', 

TTcf /Io4"n r»*î ^*î 

r\+i 

I «g,6(x, V)dV = «gg,^(x)6Vg , 

where 

M /"v"» AW = m fA/v \T\A\T -- — - - 21 
fVi 

•'v 
g 

the operator formulation of Eq. (22) becomes 
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" g S - ^  •  ( 2 3 )  

Similarly, 

Pgg. =E"' ̂  ̂  • «4) 

The existence of E~^ for a set of truncated polynomials is 

shown in Ref. [29]. Thus a , and S , can be calculated by the matrix 
gg ^gg 

multiplications. 

C. Determination of the Transmission and Reflection Matrices 

By equating Eqs. (2) and (8), the expressions of T(x) and R(x) 

become 

T(x) = 

R(x) =7 (B e'^C + B e^V)T(x). 

Numerically, it is not convenient to work with large positive exponentials. 

In all practical calculations performed to date, the asymptotic expres­

sions have been applied [24], 

T^(x) = 4c;|;^e"^''B"^ , (25) 

R.^(x) = B B"^ . (26) 

For very thin (1 mean free path or less) shields, the more accurate 

expression should be used. 
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D. Point Matrix Kernel Method 

The point matrix kernel is derived from the transfer matrix by 

using the point-to-plane transformation [24] 

iP^x, V) = 2TT j (r, V)dr, (27) 

I 

where 

( I^(x, V) = 217 I I(x, V, u))P^(cu)dœ (28) 

CO 

and I(x, V, m) = ̂  1/%, V)P (m). (29) 
Z=0 * 

The integral equation of I^^Cr, V) in Eq. (27) can be solved for 

each moment. When £ = 0 

I^^(x, V) = 2tt f r(l)lP^(r, V)dr, 

Jlxl 1*1 

taking the partial derivative with respect to x and assuming that the 

flux at the infinite distance is zero results in 

1^ V) = - 2TTxI^^(x, V), 

° ^ f fe ")} • (30) or 

When 4 = 1  

Il^(x, V) = 2Tr j r(^)I^*^(r, V)dr, 

using the same technique as in X = 0 results in 
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or 

1^ lP^(x, V) = i lf(x, V) - 2TTxlP^(x, V), 

lP^(x, V) = - ̂  |x ̂  lP^(x, V) - lP4(x, V)| . (31) 

For X = 2 

2 
lP^(x, V) = 2tt f r(| ̂  - •|)lP^(r, V)dr, 

Jia |x |  

after taking the partial derivative twice one has 

^ Ig^Cx, V) I^(x, V) - 6TTIP^(X, V) - 2ttx V) 

In order to obtain I^^(x, V) as an exact differential, the above 

2 
equation can be multiplied by x . This results in 

2tt x^iP^Cx, V) =- x^ ̂  I^^(x, V) +x 1^ iP-^Cx, V). (32) 
àx 

After integration by parts, Eq. (32) becomes 

if (X, V)= - ̂  (x ̂  lP^(x, V) - 3lP^(x, V) 

jix \ 
+ 3x"l I I?^(x, V)dx}. (33) 

2 I 
m ' 

For Z = 3 

0° 3 

I^'^(x, V) = 2 T r  j  r ( Y  ̂  -  f  V ) d r ,  

J \K \  ^  

because of only two integration terms involving if(r, V), again second 

order partial derivatives are required. The result is 
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4 if ') 4 h - 8"if <='. 
àx X 

- 2TTX I^ I^*^(x, V). (34) 

An exact differential form of (x, V) can be obtained by multiplying 

3 
by X in the above equation and writing 

2TT x\^*^(x, V) =- x^ Ig'^(x, V) +3x^ Ig'^Cx, V) 

- 3xlP^(x, V). (35) 

Equation (35) can be solved for I^^(x, V) by integration by parts, 

13^(x, V) =- jx 1^ 13"^(x, V) -6l^'^(x, V) 

m 

For j6 = 4 and Z = 5, one has 

+ 15x ^ V)dx - 15x ̂ J^3^(*» V)dx^|. (36) 

V) =2tt f r(|5. ïj . |2 2_ + v)dr 

7|x|  "  

and Ic^(x, V) =2tt f r(|^ ̂  ̂  ̂ ̂  f)Ig'<r, V)dr, 

J|x| ' ^ 

taking partial derivatives three times is necessary for both equations 

and the results are 

6 if (X. V) ^ if (X. V) if (X, Ï) if (X, V) 
OX dx X 

2 
- 18TT ̂  V) - 2TTX ̂  LP'(X, V) 

ÔX 
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and ^ 15"^(x, V) =| V) Ig'^Cx, V) Ic^(x, V) 
ôx"* ^ * aa^ 5 xT ** 5 3^5 5 

- 15*^(x, V) - 22TT Î  I^^(x, V) - 2TTX I^^Cx, V). 

ÔX 

5 6 
Multiplying the equations by x and x , respectively, exact differential 

forms can be obtained. These are 

2TT (X̂ Î (̂X, V)) = - X̂  I?'̂ (X, V) +3X'̂  ~ V) 
® ^ ôx-^ ^ ôx^ ^ 

- h f 

and 2TT ̂  (x^ ^ x^I^^(x, V)) = - x^ I^^Cx, V) +6x^ (x, V) 

bx ÔX 

- 15x^ ^ I^^(x, V) + 15x^lP^(x, V). 

After the integrations one has 

Ia'^Cx, V) = - Ix ^ I?'^(x, V) - lOl^'^Cx, V) 

2TTX I  ̂

+ 45x ^ (l^'^(x, V)dx - 105x ^ /ÏÎ^^Cx, V)dx^ 

+ 105x"^jj^(lP^(x, V)dx^}, (37) # 
Jl^'^Cx, V)dx - 420 X ̂  

(x V)dx^ - 9U5x'^JJJJl] 

and Ig^(x, V) ^ |x I^'^(x, V) - 151^"^(x, V) 

+ 105x ^ |l^'^(x, V)dx - 420 x ^ V)dx^ 

+ 945x ^|||lq'^(x, V)dx^ - 945x ^f/Hl^'^Cx, V)dx^|. 

(38) 

From Eqs. (30), (31), (33), (36), (37), and (38), one can deduce 

a general formula for the j0th moment to be 
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if (X, V) = - X) <*' V), (39) 

^ 2trx^ ^ 

A - (- + k)I 

2\:(X - k)'. 

d^lfcx, v) =|^lf(x, v), 

and V) = r lj'^(x, V)dx, etc., 

Jo '0 

Eq. (39) is obtained by deduction only and has not been proven in 

general. 

One can find that & = 0 and Z = 1 correspond to the flux density 

and the current density relations. 

In an infinite medium, infinite reflection on both sides of the 

source should be taken into account. Therefore the total source is 

|(i+r^+r^ + ...) + (r +r^ +...)l s= (i -r )"^s. 
j GO CD CO CO I CO 

Similarly, the infinite reflections at the response point result in 

the same expression. In the forward direction through the shield 

material, 

I + R^ + R^ + ... = (I - R^)"" 
CO CO co' 

and in the backward direction 

r + r^ + ... = r (i - r^)'^ . 
œ .00 CO CO 

Hence (I - R^)"^T(x)(I - Rj"^S and R^(I - R^)"^T(x) (I - I^)"^S 

give the distributions in the forward and backward directions through 

the slab. Applying the point-to-plane transformation to Eq. (39) 

results in 
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I 
1 

2TTX' 
2 

0 
(40) 

and 

2tb = v:- %!)'! {- Z (i -
I 2TTX k=0 ( 

(41) 

An immediate conclusion is that the infinite reflection functions are 

the same for point and plane and hence transmission through a finite 

slab can be generalized from Eqs. (40) and (41) to be 

The expression in the braces in Eq. (42) is called the point matrix 

kernel of the 2th moment. Equation (42) is valid under the assumption 

that the boundary effects due to boundaries not being normal to the 

ray are insignificant. 

After expanding Eq. (42) one finds that the higher Legendre moment 

can be developed in terms of the lower moments plus one extra term. 

where the B^^'s are constants determined by A^^. In Table 1 are shown 

values of With i up to 6. 

In both Eqs. (42) and (43), the derivative and integrations 

of T(x) are required, the asymptotic expression T^(x) has been used 

for this derivation. Therefore 

(42) 

(43) 
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Table 1. Values of B., 
ZK. 

k value 

JL 0 1 2 3 4 5 6 

0 - 1 0 0 0 0 0 0 

1 1 1 0 0 0 0 0 

2 - 2 3 - 3 0 0 0 0 

3 5 - 9 5 15 0 0 0 

4 - 14 28 - 20 7 - 105 0 0 

5 42 - 90 75 - 35 9 945 0 

6 - 132 297 - 275 154 - 54 11 - 10395 

xD^T^(x) = |(- Ax)e"^* B~^| , (44) 

x"^d^^t^(x) = 4c^^|- 0^x)"^e"^ + 0\x)"^| b"^ , 

x"^d"\(x) = 4c"^ j(ax)"^e"^,- c\x)"^ + ̂  0\x)"^|b"^ , 

and the general expression for the integration of T_(x) is 

x""d^%(x) = 4c^1(- 1)"" |o\x)"%"^^ - c\x)"^ (ax)'"""^^ 

- jr (/\%)"°^^ + ... + C\X)'^|B~^ . (45) 
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IV. COMPUTATIONAL METHODS AND NUMERICAL INVESTIGATICMS 

Based on the theory discussed previously, a computer code has 

been developed such that the necessary operations in the transfer matrix 

method can be performed effectively and efficiently. The code is 

divided into four steps. 

In the first step the two basic matrix operators a • and B , 
gg gg 

defined in Eqs. (23) and (24) are calculated. The second step is 

used to diagonalize the matrix W, given in Eq. (7). In this procedure 

eigenvalues and eigenvectors of very large matrices must be found. In 

step three, the and C^ matrices are obtained. Further manipulations 

of these matrices are done for future shielding calculations. In 

step four, the basic shielding calculations are performed. 

The input cross sections are obtained from DLC-2/lOOG^. These 

data are averaged over each specified group width and consist of fine 

group constants. The data have a 100-group structure with energy 

boundaries identical to those in the GAH-II library [13], as shown in 

Table 2. The group-to-group transfer matrices reflects only down-

scatter in energy, and group 100 serves as a thermal group. In most 

of the cross section data files the microscopic cross sections are ar­

ranged in the following format: 

^DLC-2/100G, a 100-group neutron transport code cross section data 

generated by SUPERTOG from ENDF/B-III, was generated by R- 0. Wright 

of the ORNL Mathematical Division and distributed by RSIC, Oak Ridge, 

Tennessee. 
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Table 2. GAM-II energy group boundaries 

Energy Velocity 

Group Upper (ev) Lower (ev) (cm/sec) 

1 1.4918(7) 1.3499(7) 5.1555(9) 
2 1.3499(7) 1.2214(7) 4.9093(9) 
3 1.2214(7) 1.1052(7) 4.6744(9) 
4 1.1052(7) 1.0000(7) 4.4503(9) 
5 1.0000(7) 9.0484(6) 4.2366(9) 
6 9.0484(6) 8.1873(6) 4.0328(9) 
7 8.1873(6) 7.4082(6) 3.8386(9) 
8 7.4082(6) 6.7032(6) 3.6536(9) 
9 6.7032(6) 6.0653(6) 3.4772(9) 

10 6.0653(6) 5.4881(6) 3.3092(9) 
11 5.4881(6) 4.9659(6) 3.1492(9) 
12 4.9659(6) 4.4933(6) 2.9968(9) 
13 4.4933(6) 4.0657(6) 2.8517(9) 
14 4.0657(6) 3.6788(6) 2.7135(9) 
15 3.6788(6) 3.3287 (6) 2.5819(9) 
16 3.3287(6) 3.0119(6) 2.4566(9) 
17 3.0119(6) 2.7253(6) 2.3374(9) 
18 2.7253(6) 2.4660(6) 2.2239(9) 
19 2.4660(6) 2.2313(6) 2.1158(9) 
20 2.2313(6) 2.0190(6) 2.0130(9) 
21 2.0190(6) 1.8268(6) 1.9151(9) 
22 1.8268(6) 1.6530(6) 1.8220(9) 
23 1.6530(6) 1.4957(6) 1.7333(9) 
24 1.4957(6) 1.3534(6) 1.6490(9) 
25 1.3534(6) 1.2246(6) 1.5688(9) 
26 1.2246(6) 1.1080(6) 1.4924(9) 
27 1.1080(6) 1.0026(6) 1.4197(9) 
28 1.0026(6) 9.0719(5) 1.3506(9) 
29 9.0719(5) 8.2086(5) 1.2848(9) 
30 8.2086(5) 7.4274(5) 1.2222(9) 
31 7.4274(5) 6.7206(5) 1.1627(9) 
32 6.7206(5) 6.0811(5) 1.1061(9) 
33 6.0811(5) 5.5024(5) 1.0522(9) 
34 5.5024(5) 4,9788(5) 1=0009(9) 
35 4.9788 à) 4.5050(5) 9.5210(8) 
36 4.5050(5) 4.0763(5) 9.0571(8) 
37 4.0763(5) 3.6884(5) 8.6160(8) 
38 3.6884(5) 3.3374(5) 8.1961(8) 
39 3.3374(5) 3.0198(5) 7.7965(8) 
40 3.0198(5) 2.7324(5) 7.4169(8) 
41 2.7324(5) 2.4724(5) 7.0549(8) 

*1.4918(7) means 1.4918 X lo/. 
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Table 2. (Continued) 

Energy Velocity 

Group Upper (ev) Lower (ev) (cm/sec) 

42 2.4724(5) 2.2371(5) 6.7109(8) 

43 2.2371(5) 2.0242(5) 6.3840(8) 

44 2.0242(5) 1.8316(5) 6.0726(8) 

45 1.8316(5) 1.6573 (5) 5.7761(8) 

46 1.6573(5) 1.4996(5) 5.4957(8) 

47 1.4996(5) 1.3569(5) 5.2269(8) 

48 1.3569(5) 1.2278(5) 4.9716(8) 

49 1.2278(5) 1.1109 (5) 4.7286(8) 

50 1.1109(5) 8.6519(4) 4.3476(8) 

51 8.6519(4) 6.7381(4) 3.8368(8) 

52 6.7381(4) 5.2476(4) 3.3859(8) 

53 5.2476(4) 4.0869(4) 2.9881(8) 

54 4.0869(4) 3.1829(4) 2.6370(8) 

55 3.1829(4) 2.4788(4) 2.3271(8) 

56 2.4788(4) 1.9305(4) 2.0537(8) 

57 1.9305(4) 1.5035(4) 1.8124(8) 

58 1.5035(4) 1.1709(4) 1.5994(8) 

59 1.1709(4) 9.1191(3) 1.4115(8) 

60 9.1191(3) 7.1020(3) 1.2456(8) 

61 7.1020(3) 5.5310(3) 1.0993(8) 

62 5.5310(3) 4.3076(3) 9.7009 (7) 

63 4.3076(3) 3.3547(3) 8.5610(7) 

64 3.3547 (3) 2.6127(3) 7.5551(7) 

65 2.6127(3) 2.0348(3) 6.6674(7) 

66 2.0348(3) 1.5847(3) 5.8839(7) 

67 1.5847(3) 1.2341(3) 5.1925(7) 

68 1.2341(3) 9.6115(2) 4.5824(7) 

69 9.6115(2) 7.4855(2) 4.0440(7) 

70 7.4855(2) 5.8297(2) 3.5688(7) 

71 5.8297(2) 4.5402(2) 3.1494(7) 

72 4.5402(2) 3.5359(2) 2.7794(7) 

73 3.5359(2) 2.7538(2) 2.4528(7) 

74 2.7538(2) 2.1446(2) 2.1646 (7) 

75 2.1446(2) 1.6702(2) 1.9102(7) 

76 1.6702(2) 1.3008(2) 1.6858(7) 

77 1.3008(2) 1.0131(2) 1.4877(7) 

78 1.0131(2) 7.8897(1) 1.3129(7) 

79 7.8897(1) 6.1445(1) 1.1586(7) 

80 6.1445 (1) 4.7854(1) 1.0225(7) 

81 4.7854(1) 3.7268(1) 9.0234(6) 

82 3.7268(1) 2.9025(1) 7.9631(6) 

83 2.9025(1) 2.2604(1) 7.0274(6) 

84 2.2604(1) 1.7604(1) 6.2017(6) 
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95 
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98 
99 
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(Continued) 

Energy Velocity-

Upper (ev) Lower (ev) (cm/sec) 

1.7604(1) 
1.3710(1) 
1.0678(1) 
8.3157(0) 
6.4763(0) 
5.0438(0) 
3.9281(0) 
3.0592(0) 
2.3825(0) 
1.8555(0) 
1.4451(0) 
1.1254(0) 
8.7649(-1) 
6.8262(-1) 
5.3163(-1) 
4.1404 (-1) 

1.3710(1) 
1.0678(1) 
8.3157(0) 
6.4763(0) 
5.0438(0) 
3.9281(0) 
3.0592(0) 
2.3825(0) 
1.8555(0) 
1.4451(0) 
1.1254(0) 

8.7649(-1) 
6.8262(-1) 
5.3163 (-1) 
4.1404(-1) 
3.8745(-14) 

5.4729(6) 
4.8299(6) 
4.2623(6) 
3.7615 (6) 
3.3195(6) 
2.9295(6) 
2.5852(6) 
2.2815(6) 
2.0134(6) 
1.7768(6) 
1.5680(6) 
1.3838(6) 
1.2212(6) 
1.0777(6) 

9.5108(5) 

6.2932(5) 
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Position Cross section type 

IHT - 2 

IHT - 1 

IHT 

IHT + 1 

act 

act 

act 

va. 

IHS - I 

IHS 

IHS + 1 

IHM 
gg-nd9^g 
sJL 

upscatter 

downscatter 

Thus the parameters IHT, IHS, and IHM conçletely describe the format of 

the cross sections. If there is no activity and no upscatter cross 

sections, IHT = 3 and IHS = IHT + 1 will be used. On the DLC-2/100G 

file, IHT = 3, IHS =4, and IHM = 103. Legendre polynomial expansions 

for cross sections are in increasing order 0?q, etc.). 

For the order of larger than zero, only the first IHN terms are 

nonzero and the rest, IHM - IHN, are zero. Computational time can be 

reduced by using IHM as the length of the cross section table for the 

Pq term and using IHN for those with orders higher than P . 
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Because of downscatter, the matrices a and p have the characteristic 

block lower triangular form. The number of diagonal blocks depends on 

the number of energy groups used in the calculations. Each block is a 

square matrix and represents the number of Legendre terms used in the 

angular expansion. The matrices, E E ^Z, and stored as 

one-dimensional arrays with a vector serving as the locator of the 

first entry of each block matrix. Scattering cross sections are read 

in such that <t®  . . . ,  a r e  f o r m e d  a s  t h e  d i a g o n a l  m a t r i x  l o c a t e d  
so sL ° 

at the (g'j g) block. Thus a , and g , can be calculated by the 
gS 8S 

matrix multiplications. 

The diagonalization of W in step two can be reduced to that of 

the operator A= (a+P)(a - p). Eigenvalues and dual eigenvectors in 

each diagonal block of A are computed first by IMSL subroutines^. 

By means of these results, the eigenvalue spectrum and dual eigenvector 

matrices of the block triangular matrix A can be computed [3, 29]. 

The a and P matrices along with eigenvalue and dual eigenvector 

matrices are read into the third step to compute the matrices and 

C^. In order to facilitate further shielding calculations, five 

~ -1 -1 -1 -1,-1 -1,2,-1 
combinations B_j_, , B_B^ , (I - B_B^ ) , and (I - (B_B^ ) ) are 

read into permanent storage. 

The basic shielding calculations are performed in step four. 

Various matrix-vector operations are needed for this step. Infinite 

reflection and source backing conditions are used as options. Trans­

mitted and reflected fluxes for a plane source can be obtained by the 

^The IMSL (International Mathematical and Statistical Libraries, 

Inc.) Library contains 245 subroutines compatible with FORTRAN IV. 
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multiplications of T(x)^ and R(x)T(x)^, respectively. For point source 

problems, the derivative and integrations of T(x) are needed from 

Eqs. (44) and (45). Based on Eqs. (29), (40), and (41), the distribu­

tions in the forward and backward directions are obtained. 

A major computational advantage for this method is that the 

results from the first three steps are common to problems for different 

spatial configurations. The bulk of the computing time for a single 

problem goes into evaluating the matrices B_|_ and C^. These are 

specific for each material but do not depend on the shielding thick­

ness. The H, T, and R matrices for a shield are characteristic only 

of the material and the thickness of the shield, and do not depend on 

the remainder of the configuration. Thus intermediate results can be 

stored on tape and never need to be recomputed. 

A basic problem with the input data is to determine how many 

terms are needed for the angular expansion. The number required depends 

not only on the type of angular expansion functions but also on the 

width of the energy groups. Legendre polynomials in angular expansions 

and GAM-II energy groups were used for the present work. 

In order to determine the required angular terms, fast neutron 

shielding by sodium was selected as an example for the investigation. 

Group 19 in Table 2 was chosen to be the source group and, due to the 

downscatter property, neutrons were slowed down to lower energy groups. 

After group 23, the energy was "cut-off." Transmitted energy spectra 

for sodium for a variety of thicknesses at various angles using different 

angular terms were calculated and the results were plotted in Figs. 2, 

3, and 4. 
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Fig. 2. Transmitted neutron spectra in sodium at various distances 

from a plane isotropic source with energy from 2.23 to 2.47 MeV 
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www.manaraa.com

0 xio 0 X 10 

2.23-2.47 MeV 2.02-2.23 MeV 

0x10 

1.50-1.65 MeV 1,65-1.83 MeV 

0 X 10 

1.83-2.02 MeV 

0: neutrons/cm^-sec-ster 

Fig. 4. Angular Ilux distributions due to a 2.23 to 2.47 MeV plane isotropic source incident 

upon 30 cm sodium 
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Four different angular terms were used in the primary calculation. 

In Fig. 2, no significant difference could be observed by using different 

angular terms. The solutions of and approximations fell between 

those of the P^ and P^ approximations. In Table 3 is shown the numerical 

results of transmitted fluxes through 80 cm of sodium by using four 

different angular expansion terms. An asymptotic solution can be found 

by taking an infinite number of angular terms. However, disagreements 

for measured angles larger than 50° by taking different angular terms 

are observed, as shown in Fig. 3. Therefore, more angular terms are 

required for spectra at large angles from the normal. 

Table 3. Transmission through 80 cm of sodium, in units of 

neutrons/cm^-sec-MeV. Isotropically incident flux normalized 

to 1 neutron/cm^-sec 

'Energy Angular expansion 

group p2 ^3 p4 p5 

19 1.179 X 10-4 1.256 X 10-4 1.208 X 10-4 1.238 X 10-4 

20 9.747 X 10"" 1.025 X 10"^ 1.000 X lO's 1.020 X 10-5 

21 4.945 X 10-g 5.131 X 10-* 5.044 X 10-g 5.117 X 10-* 

22 9.609 X lo'g 1.006 X 10-5 9.843 X 10-g 1.002 X 10-5 

23 2.590 X 10"* 2.708 X 10-g 2.658 X 10-g 2.704 X 10-* 

If the asymptotic solution is assumed to be the "exact" solution, 

then the error due to Pg expansions can be estimated by calculating the 

differences between the solutions of P^ and P^ expansions. In Table 3, the 

differences between the P^ and P^ expansions are 4% for the source group 

and < 3% for the rest of the groups. Therefore a 4% error due to a P3 
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approximation can be expected. This value, however, is an overestimated 

value, since most of the transport calculations using approximations 

for the elastic scattering angular distributions gave reasonable results 

[18]. Thus Pj expansions were chosen for later work. 
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V. RESULTS AND DISCUSSION 

The transfer matrix method was employed to compute the angular energy 

distributions of fast neutrons from a monoenergetic source and from a 

fission spectrum. Comparisons between the calculated and experimental 

spectral distributions were made and used to evaluate the validity of 

the calculation method, to establish the limits of its application, and 

to check average group cross sections used in the calculation. 

It is evident that the angular energy distributions depend on the 

spectrum and geometry of the neutron source, the physical properties 

of the medium, the boundary conditions, etc. In order to make the comparison, 

specifications of these conditions in the calculation and the experiment 

are required. 

The angular energy spectra beyond the iron layer due to a 3.01-

3.32 MeV point isotropic source were calculated by the transfer matrix 

method and the results were plotted in Figs. 5 through 8. The 

experimental results were taken from Ref. [15]. In the experiment a 

3 
neutron source based on the D(D, n)He reaction was used. The 

experimental setup was centered at a medium-water interface. This 

reaction provides a point isotropic source, which may be regarded as 

monoenergetic. The experimental data were obtained by the integrated 

recoil-nuclei method (with a single crystal scintillation spectrometer). 

This experiment often has low accuracy (10-40%), because of the method 

used for transforming the amplitude distributions to the required 

spectra. Hence, the con^arison of calculated and experimental data 

cannot be considered in an exact sense. The experimental and calculated 
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angular energy spectra were normalized to the same level in the region 

1.50 to 1.65 MeV. 

In Figs. 5 and 6, comparisons are shown between the calculated 

and experimental angular energy spectra at angles of 20 and 40° from 

the normal behind 16 cm of iron. The elastic scattering peak appears 

at energies near the source energy. A sharp peak at the source group 

is observed in the calculated spectrum. This is due to narrow energy 

groups and deficient angular terms used in the transfer matrix 

calculation. Both experimental and calculated spectra show the 

minima in the energy ranges 2.47 to 2.73 MeV and 1.22 to 1.35 MeV, 

which correspond to the resonances in the iron cross section as 

shown in Fig. 9. The calculated spectra were obtained under the 

infinite medium assumption, while the experimental data were taken using 

a water-medium boundary. The reflection from the water gave a pronounced 

peak at energies below 1 MeV. In the calculated spectra, there are 

explicit peaks and valleys as compared with values obtained in the 

experiment. Part of the error is due to the use of a group processing 

code with Pg and PQ truncations of the angular distributions arising 

from elastic and inelastic scattering, respectively. However, the 

overall agreement is good at 20° but inadequate at 40°. The discrepancies 

which occurred at 40° are due to the deficient expansion terms used in 

the angular fluxes. 

In Figs. 7 and 8 are given the experimental energy spectra after 

penetrating iron layers (10.3 and 16 cm). Results are also given in 

Figs. 7 and 8 for transfer matrix calculations of the energy distributions 

in iron with an isotropic point source. Monte Carlo calculations [9] 
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in iron from a plane, monodirectional source of 3 MeV neutrons is also 

shown. The experimental source spectrum and the monoenergetic neutron 

source used for transfer matrix calculations are shown in Fig. 10, 

Comparison of the spectra indicates an overestimate by the transfer 

matrix method in the energy region 2 to 2.5 MeV still exists. 

The angular energy distributions through iron and sodium from a 

fission source were calculated. These materials were chosen because 

of their practical applications in the Liquid Metal Fast Breeder 

Reactor (LMFBR). A 27-energy-group structure is used to cover the 

neutron energies from 1 MeV to 15 MeV. In order to avoid very 

large matrix calculations, a expansion in angular distributions 

was chosen for the rest of the work. From Table 3, an underestimate 

is predicted for the calculation using expansions. 

In Fig. 11 is shown the transmitted neutron spectra through iron 

at various distances in the semi-infinite medium from an infinite 

plane isotropic fission source. The increase of the flux with 

energies above 7 MeV in the 65 cm of iron is due to the infinite 

reflections of the material. The reflected neutron spectra of the iron 

at the corresponding distances are also shown in Fig, 12. Based on 

Fig. 11, the fast neutron relaxation length in iron is about 3.7 cm 

which is lower than 6 cm as given in Ref, [111. 

In Figs. 13, 14, 15, and 16 are shewn the experimental and calculated 

neutron spectra through iron at various angles and distances from a 

fission source. Hie calculated and experimental results are normalized 

to the same level at 3 MeV for 30.48 cm of iron measured on the normal. 

The experimental results and neutron source spectra in Figs. 13 through 17 
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are obtained from Ref. [18]. The collimated neutron beam from the Tower 

Shielding Facility (TSF-II), which was used as a neutron source for 

the experiment, has been shown to be a point anisotropic source. The 

fission spectrum used in the transfer matrix calculations is taken frcm 

Ref. [13] as shown in Fig. 17. The source geometry was chosen to be 

point isotropic. 

In the calculated results it is shown that for a 30.48 cm iron slab 

there is a slight overestimate above 5 MeV and a slight underestimate 

below 2 MeV at the 0°, about a 3.5 factor overestimate above 3 MeV at 

15° off the normal, and 2.5 factor overestimate above 4 MeV at 45° 

off the normal. The discrepancy in the off-normal cases is due to 

insufficient angular terms used in fhe calculation. An overestimate 

is observed in 15.24 cm of iron. The experimental results include 

multiple reflections between the iron slab and the reactor collimator, 

the iron collar and water shield surrounding the collimator. These 

effects were not added to the calculated results which were obtained 

using a vacuum boundary at both front and back of the slab. The 

experimental slabs were not pure iron (98% iron, 1.5% carbon, 0.5% 

manganese) and the anisotropic source used for the experiment are 

other possible reasons for errors. Slightly different fission sources 

were used for the calculation and experiment as shown in Fig. 17. 

This effect could be also added to the disagreement. 

In Fig. 18 is shown the energy distributions of 30 cm of sodium 

at the angles of 20, 40, and 70° from an infinite plane isotropic 

fission source. It will be noted that the shape of the energy 

spectrum does not change too much from one angle to another. Sodium 
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energy spectra at various distances from a point isotropic fission 

source are also given in Fig. 19. A tendency of spectrum hardening 

with increasing thickness can be observed. 

In Fig. 20 is given a comparison of calculated and experimental 

energy spectra through 152.4 cm of sodium at the normal due to a point 

isotropic source. The experiment was performed in the Tower Shielding 

Facility. From the energy spectrum obtained in the experiment [21], 

one can see three valleys at 2 MeV, 3.5 MeV, and 5.5 MeV. These 

values correspond to 2 MeV, 3.5 MeV, and 6 MeV in the calculated 

spectrum. However, a significant disagreement is found below 3 MeV. 

Analysis of the data from the transfer matrix calculation shows that 

the fast neutron relaxation length in sodium is 18.8 cm. The re­

ported experimental value is about 24 cm [27]. 

In general, the shapes of the calculated spectra of iron and 

sodium are similar to those of the e3q>erimental results. This result 

indicates that the average group cross sections used for the calculation 

are overall correct. However, the average total cross section of the 

iron in the region 1 to 2.5 MeV is too high in the DLC-2/100G evalua­

tions. This conclusion is in agreement with the results given in 

Ref. [181. 

For both calculated iron and sodium spectra, there are smooth 

curves above 4 MeV while undulations occurred below 2.5 MeV. For 

energies below 2.5 MeV, fine energy grouping was used. If the groups 

are narrow, each eigendistribution will be sharply peaked in angle in 

its group and many angular terms must be used to represent the peak 
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adequately. Since coarse energy groupings were used for energies above 

4 MeV, fewer angular terms were required. 

The shortening of the relaxation lengths of sodium and iron leads 

to underestimation of the result. This disagreement can be improved 

by taking more angular terms for the angular distributions. Aronson 

and Yarmush [3] suggested that seven terms (through Pg) in a double-P^ 

expansion for the energy grouping should suffice for a good representa­

tion of total flux and current out to 15 mean free paths. 

The transmission from a point isotropic fission source through 

the sodium-iron layers was also investigated and the results were 

plotted in Figs. 21 and 22. 
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VI. CŒCLUSIONS 

Within the scope of this investigation the following conclusions 

have been made. 

(1) The modified transfer matrix, which is formulated to accept 

average group cross section data, is applicable for neutron 

shielding calculations. The results of this method depend 

upon the angular terms and energy groupings used in the 

calculation. The Pg expansion underestimated the result 

and the expansion overestimated the result. However, a 

Pg expansion should give satisfactory results, even if the 

fine energy grouping is used in the calculation. 

(2) The essential computational advantage was retained by the 

modified transfer matrix method. The bulk of the computing 

time for a single problem goes into evaluating the eigenvalue 

spectrum and the eigendistributions. These are specific for 

each material but do not depend on the source geometry and 

shielding configurations. 

(3) The developed higher order moments of the point matrix kernel 

gave good accomplishments in calculating transmitted and re­

flected angular distributions due to a point isotropic source. 

A good representation of the angular distributions can be 

obtained by taking higher order moments into account. 

(4) The average total cross section of the iron in the region 1 

to 2.5 MeV is shown to be high in the DLC-2/100G evaluations. 

For energies above 3 MeV, the average group cross sections 
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of the iron and sodium in the DLC-2/100G evaluations show 

good agreement with the experimental result. 
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VII. SUGGESTIONS FOR FURTHER STUDY 

As has been indicated previously the major problem in the in­

vestigation has been with the order of the double-P^ expansion of the 

angular variable. Better accuracy can be obtained by using higher 

order polynomial. However, a higjier order polynomial would increase 

the size of the problem considerably. As an alternative, angular 

dependence expanded in other polynomials could be tried. 

With the fast neutron distribution obtained by the modified 

transfer matrix method, one could then calculate the secondary gamma 

sources due to inelastic scattering of fast neutrons. Coupling this 

secondary gamma source with that one due to thermal neutron capture, 

would yield a good approximation to the production and transmission of 

secondary gammas in a slab. Since the thermal neutron distribution is 

dependent upon the fast neutron distribution, the modified transfer 

matrix method could serve to obtain the thermal distribution as well. 

A final suggestion for further investigation is the possibility 

of applying the higher order moments of the point matrix kernel to 

determine the angular flux distributions due to isotropic line, disk, 

and volume sources. 
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X. APPENDIX 

In this appendix is described the computations for 

.1 

L mn I d?) 

and 

•'O «fQ 

(18) 

The half-range Legendre polynomials obey the recurrence relation [8] 

2(2n + l)u)Pt(u)) = (n4-l)P^_ (m) + (2n + l)p\u)) +nP''" , (ta). (A-1) 
n uTi n u- i 

Substitution of Eq. (A-1) into Eq. (17), results in 

•'0 •'0 

r + 2(^1 

'0 

2 (2n +1) (2m +1) m,n+l 2(2m + l) m,n 

" (A-2) 
2(2n +1) (2m +1) m,n-l 

The orthogonality of the half-range Legendre polynomials was employed 

xn Eq# (A—2) * Sased cti Eq# (A—2), a 7 X 7 matrix E is shewn m Table 4, 

£ 
The evaluation of d (p^) is done by the following method [17]. Define 

P^(u))P^((u)dcu. ^£m " i po. d'"- (a-3) 

Equation (18) becomes 
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Table 4. The matrix E (e ) 
mn 

m 

n 0 1 2 3 4 5 6 

0 1/2 1/6 0 0 0 0 0 

1 1/6 1/6 1/15 0 0 0 0 

2 0 1/15 1/10 3/70 0 0 0 

3 0 0 3/70 1/14 2/63 0 0 

4 0 0 0 2/63 1/18 5/198 0 

5 0 0 0 0 5/198 1/22 3/143 

6 0 0 0 0 0 3/143 1/26 

The relation between the full-range and half-range Legendre 

polynomials is 

= P (2w - 1). 
m m 

Using the expansion for P^(2u) - 1), 

<2»' - - 1) ~ - 1). 

Eq. (A-3) becomes 

2m- 1 

Im m 

m - 1 

r2a)Pjg(u))P^_^(2cu-l)du)-^ï^ j P^(u))P^_;,^(2(u-l)doj 

f P. (m)P^ - (2(1) - l)dm. 
m I j0 m-2 

Substituting 
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+ + 1 ^X+1 

in the first term, and using the definition of f^^^ one obtains 

f 2m - 1 2i 2m- 1 2(Ji + l) 
j&m m 2£ + l  i-l,m-l m 2J& + 1 J&+1 ,m-l 

_ ~ ^ f _ 2-1-1. f (A-5) 
m ^J6,m-1 m ^X,m-2 * 

This recursion relation suggests that the calculation of f^^ can be 

achieved if h.m-l' 

off a calculation like this, the first and second columns must be known 

as well as the first row. 

The first column can be computed as follows: 

h,o ' f 
Jo 

By means of the relation 

^0 •o 

and using fg ^ = 1 and ^2 0 " it is obvious that all the even numbers 

of the first column are equal zero. 

But f^ Q = 1/2; therefore, one obtains f^ q = - 1/8, f^ ^ = 1/16, 

f^ Q = - 5/128, etc. The second column can be computed similarly 

P^(co)(2(o - l)du) 

"tt r 1 Pjt+i-1 
Jq JQ •'0 

2i 
2L 

2J& f I 2(jg + 1) . 

2^ + 1 ̂ A-1,0 24 + 1 ^je+1,0 • =4,0 ' 
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Finally one notes that = 0 for m > £. To prove this, expand P^((u): 

P^(u)) = ^ A^P^(2u) - 1), 

=0 

,1 

I m -  I - DP.O» - 1)4® L 
•tj4 2 \ \ 

For m > A, f^^ = 0, therefore f^^ is a low triangular matrix. 

By means of Eqs. (A-5), (A-6), and (A-7), f^^ can be calculated 

to the desired size. Similarly, f^^ in Eq. (A-4) can be obtained in 

the same way. 

Before substituting f^^ and f^^ into Eq. (A-4), the symmetric 

j0 
property d (p^) is noted. By virtue of the Legendre property 

Z Z 
P.(- m) = (- 1) P. (u)), d (iJ.') can be calculated as follows: 

x j  Jv mn o 

»o Jo 

= (- (A-8) 

In Table 5 is given the elements of f^^ for 4 = 6. 
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Table 5. The elements of f 

m 
z 0 1 2 3 4 5 6 

0 1 0 0 0 0 0 0 

1 1/2 1/6 0 0 0 0 0 

2 0 1/4 1/20 0 0 0 0 

3 -1/8 1/8 1/8 1/56 0 0 0 

4 0 -1/24 1/8 1/16 1/144 0 0 

5 1/16 -1/16 1/32 3/32 1/32 1/352 0 

6 0 1/64 -3/64 1/16 1/16 1/64 1/832 
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